Anisotropy minimization via least squares method for transformation optics
نویسندگان
چکیده
منابع مشابه
Least – Squares Method For Estimating Diffusion Coefficient
Abstract: Determination of the diffusion coefficient on the base of solution of a linear inverse problem of the parameter estimation using the Least-square method is presented in this research. For this propose a set of temperature measurements at a single sensor location inside the heat conducting body was considered. The corresponding direct problem was then solved by the application of the ...
متن کاملLEAST – SQUARES METHOD FOR ESTIMATING DIFFUSION COEFFICIENT
Determining the diffusion coefficient based on the solution of the linear inverse problem of the parameter estimation by using the Least-square method is presented. A set of temperature measurements at a single sensor location inside the heat conducting body is required. The corresponding direct problem will be solved by an application of the heat fundamental solution.
متن کاملA secant method for nonlinear least-squares minimization
Quasi-Newton methods have played a prominent role, over many years, in the design of effective practical methods for the numerical solution of nonlinear minimization problems and in multi-dimensional zero-finding. There is a wide literature outlining the properties of these methods and illustrating their performance [e.g., [8]]. In addition, most modern optimization libraries house a quasi-Newt...
متن کاملLow-rank Matrix Recovery via Iteratively Reweighted Least Squares Minimization
We present and analyze an efficient implementation of an iteratively reweighted least squares algorithm for recovering a matrix from a small number of linear measurements. The algorithm is designed for the simultaneous promotion of both a minimal nuclear norm and an approximatively low-rank solution. Under the assumption that the linear measurements fulfill a suitable generalization of the null...
متن کاملLeast-Squares Minimization Under Constraints
These algorithms are, however, not designed to perform least-squares minimization under hard constraints. This short report outlines two very simple approaches to doing this to solve problems such as the one depicted by Fig. 1. The first relies on standard Lagrange multipliers [Boyd and Vandenberghe, 2004]. The second is inspired by inverse kinematics techniques [Baerlocher and Boulic, 2004] an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2014
ISSN: 1094-4087
DOI: 10.1364/oe.22.018490